login
A096789
Decimal expansion of BesselI(1,2).
26
1, 5, 9, 0, 6, 3, 6, 8, 5, 4, 6, 3, 7, 3, 2, 9, 0, 6, 3, 3, 8, 2, 2, 5, 4, 4, 2, 4, 9, 9, 9, 6, 6, 6, 2, 4, 7, 9, 5, 4, 4, 7, 8, 1, 5, 9, 4, 9, 5, 5, 3, 6, 6, 4, 7, 1, 3, 2, 2, 8, 7, 9, 8, 4, 6, 0, 8, 5, 4, 5, 0, 3, 7, 5, 3, 5, 3, 6, 1, 1, 8, 5, 1, 1, 6, 1, 2, 2, 1, 4, 7, 5, 9, 4, 2, 2, 8, 9, 2, 5, 2, 3, 7, 7, 5
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
FORMULA
Equals Sum_{k >= 0} k/k!^2.
Continued fraction expansion: 1/(1 - 1/(3 - 2/(7 - 6/(13 - 12/(21 - ... - n*(n-1)/(n^2+n+1 - ...)))))). For a sketch of the proof see A228229. Cf. A070910. - Peter Bala, Aug 19 2013
From Amiram Eldar, Jul 09 2023: (Start)
Equals exp(-2) * Sum_{k>=1} A000108(k)/(k-1)!.
Equals exp(2) * Sum_{k>=1} (-1)^(k+1) * A000108(k)/(k-1)!. (End)
EXAMPLE
1.59063685463732906338225...
MAPLE
evalf(BesselI(1, 2)). # R. J. Mathar, Oct 16 2015
MATHEMATICA
RealDigits[BesselI[1, 2], 10, 110][[1]]
(* Or *) RealDigits[ Sum[ n/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
PROG
(PARI) besseli(1, 2) \\ Charles R Greathouse IV, Feb 19 2014
CROSSREFS
KEYWORD
cons,easy,nonn,changed
AUTHOR
Robert G. Wilson v, Jul 09 2004
STATUS
approved