login
A298515
Decimal expansion of lim_ {n->oo} ((n + 1)*g - s(0) -s(1) - ... - s(n)), where g = (1 + sqrt (3))/2, s(n) = (s(n - 1) + 1/2)^(1/2), s(0) = 1.
3
5, 9, 0, 7, 3, 1, 6, 8, 1, 5, 1, 8, 0, 7, 7, 5, 7, 4, 1, 8, 5, 9, 7, 9, 5, 1, 7, 6, 8, 4, 1, 9, 4, 7, 8, 7, 9, 3, 0, 3, 2, 4, 0, 0, 1, 2, 4, 1, 6, 7, 7, 9, 9, 7, 1, 2, 9, 7, 8, 1, 6, 3, 6, 7, 0, 4, 9, 8, 3, 9, 7, 7, 8, 6, 4, 2, 9, 8, 2, 4, 5, 8, 0, 0, 1, 7
OFFSET
0,1
COMMENTS
(lim_ {n->oo} s(n)) = g = (1 + sqrt (3))/2. See A298512 for a guide to related sequences.
EXAMPLE
s(n) -> g = (1+sqrt(3))/2.
(n+1)*g - s(0) - s(1) - ... - s(n) -> 0.590731681518077574185979517684194787...
MATHEMATICA
s[0] = 1; d = 1/2; p = 1/2;
g = (x /. NSolve[x^(1/p) - x - d == 0, x, 200])[[2]]
s[n_] := s[n] = (s[n - 1] + d)^p
N[Table[s[n], {n, 0, 30}]];
s = N[Sum[g - s[n], {n, 0, 200}], 150 ];
StringJoin[StringTake[ToString[s], 41], "..."]
RealDigits[s, 10][[1]] (* A298515 *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Feb 11 2018
STATUS
approved