login
A298516
Decimal expansion of lim_ {n->oo} (2n+2 - s(0) - s(1) - ... - s(n)), where s(n) = (s(n - 1) + 2)^(1/2), s(0) = 1.
4
1, 3, 5, 8, 9, 1, 7, 7, 6, 2, 8, 4, 2, 7, 8, 8, 3, 4, 0, 3, 9, 5, 8, 3, 7, 6, 7, 2, 1, 8, 7, 1, 0, 5, 9, 4, 5, 2, 3, 4, 3, 8, 5, 5, 1, 8, 4, 3, 8, 5, 5, 5, 8, 3, 0, 0, 8, 6, 9, 2, 3, 6, 4, 3, 5, 5, 6, 7, 6, 9, 1, 5, 7, 2, 8, 2, 3, 5, 6, 2, 9, 4, 1, 5, 7, 4
OFFSET
1,2
COMMENTS
See A298512 for a guide to related sequences.
EXAMPLE
2n + 2 - s(0) - s(1) - ... - s(n) -> 1.358917762842788340395837672187105945234...
MATHEMATICA
s[0] = 1; d = 2; p = 1/2;
g = (x /. NSolve[x^(1/p) - x - d == 0, x, 200])[[2]]
s[n_] := s[n] = (s[n - 1] + d)^p
N[Table[s[n], {n, 0, 30}]];
s = N[Sum[g - s[n], {n, 0, 200}], 150 ];
StringJoin[StringTake[ToString[s], 41], "..."]
u = RealDigits[s, 10][[1]] (* A298516 *)
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Feb 11 2018
STATUS
approved