login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229020
Decimal expansion of 1 - 1/(1*2) + 1/(1*2*2) - 1/(1*2*2*3) + ...
11
6, 8, 8, 9, 4, 8, 4, 4, 7, 6, 9, 8, 7, 3, 8, 2, 0, 4, 0, 5, 4, 9, 5, 0, 0, 1, 5, 8, 1, 1, 8, 6, 7, 1, 0, 5, 3, 3, 1, 3, 6, 2, 9, 4, 3, 2, 8, 9, 9, 2, 2, 4, 0, 6, 9, 3, 8, 5, 5, 1, 7, 6, 7, 0, 5, 5, 7, 6, 0, 3, 0, 5, 6, 9, 7, 3, 1, 5, 1, 5, 7, 6, 1, 3, 3, 9, 4, 9, 4, 0, 9, 6, 2, 2, 5, 6, 9, 7, 3, 7, 4, 6, 8, 3, 9, 1, 0, 7, 1, 3, 2, 5, 5
OFFSET
0,1
COMMENTS
From Peter Bala, Jan 28 2015: (Start)
As a sum of positive terms, the constant equals Sum_{k >= 1} k/(k!*(k+1)!). If we set S(n) = Sum_{k >= 0} k^n/(k!*(k+1)!) for n >= 0, so this constant is S(1), then S(n) is an integral linear combination of S(0) and S(1). For example S(7) = 16*S(0) + 11*S(1). Cf. A086880. S(0) is A096789.
The Pierce expansion of this constant begins [1, 3, 14, 15, 26, 40, 43, 71, 83, 8120, ...] giving the alternating series representation for this constant 1 - 1/3 + 1/(3*14) - 1/(3*14*15) + 1/(3*14*15*26) - .... (End)
LINKS
Eric Weisstein's World of Mathematics, Pierce Expansion.
FORMULA
Equals exp(-2) * Sum_{k>=0} binomial(2*k,k)/(k+1)!. - Amiram Eldar, Jun 12 2021
EXAMPLE
0.68894844769873820405495001581186710536...
MATHEMATICA
digits = 113; NSum[(-1)^(n+1)*1/Product[1+Floor[k/2], {k, 1, n}], {n, 1, Infinity}, NSumTerms -> digits, Method -> "AlternatingSigns", WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
RealDigits[BesselI[2, 2], 10, 113][[1]] (* Jean-François Alcover, Nov 19 2015, after Peter Bala *)
PROG
(PARI) suminf(n=1, (-1)^(n+1)*1./prod(i=1, n, 1+floor(i/2)))
(PARI) suminf(k=1, k/(k!*(k+1)!)) \\ Michel Marcus, Feb 03 2015
(PARI) besseli(2, 2) \\ Altug Alkan, Nov 19 2015
CROSSREFS
Cf. A130820.
Sequence in context: A049110 A136050 A281112 * A113697 A154476 A316858
KEYWORD
nonn,cons
AUTHOR
Ralf Stephan, Sep 11 2013
STATUS
approved