Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jun 12 2021 06:10:56
%S 6,8,8,9,4,8,4,4,7,6,9,8,7,3,8,2,0,4,0,5,4,9,5,0,0,1,5,8,1,1,8,6,7,1,
%T 0,5,3,3,1,3,6,2,9,4,3,2,8,9,9,2,2,4,0,6,9,3,8,5,5,1,7,6,7,0,5,5,7,6,
%U 0,3,0,5,6,9,7,3,1,5,1,5,7,6,1,3,3,9,4,9,4,0,9,6,2,2,5,6,9,7,3,7,4,6,8,3,9,1,0,7,1,3,2,5,5
%N Decimal expansion of 1 - 1/(1*2) + 1/(1*2*2) - 1/(1*2*2*3) + ...
%C From _Peter Bala_, Jan 28 2015: (Start)
%C As a sum of positive terms, the constant equals Sum_{k >= 1} k/(k!*(k+1)!). If we set S(n) = Sum_{k >= 0} k^n/(k!*(k+1)!) for n >= 0, so this constant is S(1), then S(n) is an integral linear combination of S(0) and S(1). For example S(7) = 16*S(0) + 11*S(1). Cf. A086880. S(0) is A096789.
%C The Pierce expansion of this constant begins [1, 3, 14, 15, 26, 40, 43, 71, 83, 8120, ...] giving the alternating series representation for this constant 1 - 1/3 + 1/(3*14) - 1/(3*14*15) + 1/(3*14*15*26) - .... (End)
%H G. C. Greubel, <a href="/A229020/b229020.txt">Table of n, a(n) for n = 0..2500</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>.
%F Equals exp(-2) * Sum_{k>=0} binomial(2*k,k)/(k+1)!. - _Amiram Eldar_, Jun 12 2021
%e 0.68894844769873820405495001581186710536...
%t digits = 113; NSum[(-1)^(n+1)*1/Product[1+Floor[k/2], {k, 1, n}], {n, 1, Infinity}, NSumTerms -> digits, Method -> "AlternatingSigns", WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 21 2014 *)
%t RealDigits[BesselI[2, 2], 10, 113][[1]] (* _Jean-François Alcover_, Nov 19 2015, after _Peter Bala_ *)
%o (PARI) suminf(n=1,(-1)^(n+1)*1./prod(i=1,n,1+floor(i/2)))
%o (PARI) suminf(k=1, k/(k!*(k+1)!)) \\ _Michel Marcus_, Feb 03 2015
%o (PARI) besseli(2, 2) \\ _Altug Alkan_, Nov 19 2015
%Y Cf. A130820.
%K nonn,cons
%O 0,1
%A _Ralf Stephan_, Sep 11 2013