|
|
A003628
|
|
Primes congruent to {5, 7} mod 8.
(Formerly M3764)
|
|
16
|
|
|
5, 7, 13, 23, 29, 31, 37, 47, 53, 61, 71, 79, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 263, 269, 271, 277, 293, 311, 317, 349, 359, 367, 373, 383, 389, 397, 421, 431, 439
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Inert rational odd primes in the field Q(sqrt(-2)).
Primes p such that p XOR 5 = p - 5. - Brad Clardy, Jul 22 2012
This sequence gives the primes p which satisfy norm(rho(p)) = - 1 with rho(p) := 2*cos(Pi/p) (the length ratio (smallest diagonal)/side in the regular p-gon). The norm of an algebraic number (over Q) is the product over all zeros of its minimal polynomial. Here norm(rho(p)) = (-1)^delta(p)* C(p, 0), with the degree delta(p) = A055034(p) = (p-1)/2. For p == 5 (mod 8) the norm is C(p, 0) (see a comment on 2*A230076) and for p == 7 (mod 8) the norm is -C(p, 0) (see a comment on A186302). For the primes with norm(rho(p)) = +1 see A033200. - Wolfdieter Lang, Oct 24 2013
|
|
REFERENCES
|
H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 498.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Select[Prime[Range[200]], MemberQ[{5, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Oct 24 2011 *)
|
|
PROG
|
(Haskell)
a003628 n = a003628_list !! (n-1)
a003628_list = filter ((== 1) . a010051) a047566_list
(PARI) {a(n) = local( cnt, m ); if( n<1, return( 0 )); while( cnt < n, if( isprime( m++) && kronecker( -2, m )==-1, cnt++ )); m} /* Michael Somos, Aug 14 2012 */
(Magma) [ p: p in PrimesUpTo(600) | p mod 8 in {5, 7}]; // Vincenzo Librandi, Aug 22 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|