login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003484
Radon function, also called Hurwitz-Radon numbers.
(Formerly M0161)
13
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2
OFFSET
1,2
COMMENTS
This sequence and A006519 (greatest power of 2 dividing n) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). - Simon Plouffe, Dec 02 2004
For all n congruent to 2^k (mod 2^(k+1)), a(n) is the same. Therefore, for any natural number m, the list of the first 2^m - 1 terms is palindromic. - Ivan N. Ianakiev, Jul 21 2019
Named after the Austrian mathematician Johann Radon (1887-1956) and the German mathematician Adolf Hurwitz (1859-1919). - Amiram Eldar, Jun 15 2021
REFERENCES
T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
Takashi Ono, Variations on a Theme of Euler, Plenum, NY, 1994, p. 192.
A. R. Rajwade, Squares, Camb. Univ. Press, London Math. Soc. Lecture Notes Series 171, 1993; see p. 127.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Frank Adams, Vector fields on spheres, Topology, Vol. 1 (1962), pp. 63-65.
J. Frank Adams, Vector fields on spheres, Bull. Amer. Math. Soc., Vol. 68 (1962), pp. 39-41.
J. Frank Adams, Vector fields on spheres, Annals of Math., Vol. 75 (1962), pp. 603-632.
J.-P. Allouche and J. Shallit, The Ring of k-regular Sequences, II.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., Vol. 307 (2003), pp. 3-29.
Adolf Hurwitz, Uber die Komposition der quadratischen formen, Math. Annalen, Vol. 88 (1923), pp. 1-25.
Michel A. Kervaire, Non-parallelizability of the sphere for n > 7, Proc. Nat. Acad. Sci. USA, Vol. 44, No. 3 (1958), pp. 280-283.
John Milnor, Some consequences of a theorem of Bott, Annals of Mathematics, Second Series, Vol. 68, No. 2 (1958), pp. 444-449.
Johann Radon, Lineare scharen orthogonaler matrizen,Abh. Math. Sem. Univ. Hamburg, Vol. 1 (1922), pp. 1-14.
FORMULA
a(n) = A003485(A007814(n)).
If n=2^(4*b+c)*d, 0<=c<=3, d odd, then a(n) = 8*b + 2^c.
If n=2^m*d, d odd, then a(n) = 2*m+1 if m=0 mod 4, a(n) = 2*m if m=1 or 2 mod 4, a(n) = 2*m+2 (otherwise, i.e., if m=3 mod 4).
Multiplicative with a(p^e) = 2e + a_(e mod 4) if p = 2; 1 if p > 2; where a = (1, 0, 0, 2). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s) *(1-1/2^s)* {7*2^(-4*s) +1 +2^(3-3*s) +3*2^(1-5*s) +2^(1-s) +2^(2-6*s) +2^(2-2*s) }/ (1-2^(-4*s))^2. - R. J. Mathar, Mar 04 2011
a(A005408(n))=1; a(2*n) = A209675(n); a(A016825(n))=2; a(A017113(n))=4; a(A051062(n))=8. - Reinhard Zumkeller, Mar 11 2012
a((2*n-1)*2^p) = A003485(p), p >=0. - Johannes W. Meijer, Jun 07 2011, Dec 15 2012
Lambert series g.f. Sum_(k >=0) q^(2^(4*k))/(1-q^(2^(4*k))) +q^(2^(4*k+1))/(1-q^(2^(4*k+1))) +2*q^(2^(4*k+2))/(1-q^(2^(4*k+2))) +4*q^(2^(4*k+3))/(1-q^(2^(4*k+3))). - Mamuka Jibladze, Dec 07 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/3. - Amiram Eldar, Oct 22 2022
EXAMPLE
G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
MAPLE
readlib(ifactors): for n from 1 to 150 do if n mod 2 = 1 then printf(`%d, `, 1) fi: if n mod 2 = 0 then m := ifactors(n)[2][1][2]: if m mod 4 = 0 then printf(`%d, `, 2*m+1) fi: if m mod 4 = 1 then printf(`%d, `, 2*m) fi: if m mod 4 = 2 then printf(`%d, `, 2*m) fi: if m mod 4 = 3 then printf(`%d, `, 2*m+2) fi: fi: od: # James A. Sellers, Dec 07 2000
nmax:=102; A003485 := proc(n): A003485(n) := ceil((n+1)/4) + ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: A029837 := n -> ceil(simplify(log[2](n))): for p from 0 to A029837(nmax) do for n from 1 to ceil(nmax/(p+2)) do A003484((2*n-1)*2^p):= A003485(p): od: od: seq(A003484(n), n=1..nmax); # Johannes W. Meijer, Jun 07 2011, Dec 15 2012
MATHEMATICA
a[n_] := 8*Quotient[IntegerExponent[n, 2], 4] + 2^Mod[IntegerExponent[n, 2], 4]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Sep 08 2011, after Paul D. Hanna *)
PROG
(PARI) a(n)=8*(valuation(n, 2)\4)+2^(valuation(n, 2)%4) /* Paul D. Hanna, Dec 02 2004 */
(Haskell)
a003484 n = 2 * e + cycle [1, 0, 0, 2] !! e where e = a007814 n
-- Reinhard Zumkeller, Mar 11 2012
(Python)
def A003484(n): return (((m:=(~n&n-1).bit_length())&-4)<<1)+(1<<(m&3)) # Chai Wah Wu, Jul 09 2022
CROSSREFS
See A053381 for a closely related sequence.
Sequence in context: A376645 A335852 A353751 * A118827 A118830 A055975
KEYWORD
nonn,easy,core,nice,mult
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000
STATUS
approved