login
A003485
Hurwitz-Radon function at powers of 2.
(Formerly M1086)
6
1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122, 124
OFFSET
0,2
COMMENTS
Positive integers that are congruent to {0, 1, 2, 4} mod 8. - Michael Somos, Dec 12 2023
REFERENCES
T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. Ovsienko and Serge Tabachnikov, Affine Hopf fibration, arXiv preprint arXiv:1511.08894 [math.AT], 2015.
V. Ovsienko and Serge Tabachnikov, Hopf fibrations and Hurwitz-Radon numbers, Math. Intell. 38 (2016) 11-18
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: (1 + x + 2*x^2 + 4*x^3) / ((1-x)*(1-x^4)). - Simon Plouffe in his 1992 dissertation
a(n) = ceiling((n+1)/4) + ceiling((n)/4) + 2*ceiling((n-1)/4) + 4*ceiling((n-2)/4). - Johannes W. Meijer, Jun 07 2011
a(n) = a(n-1) + a(n-4) - a(n-5); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=9. - Harvey P. Dale, Jun 13 2011
a(n) = -A047507(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 9*x^4 + 10*x^5 + 12*x^6+ 16*x^7 + ... - Michael Somos, Dec 12 2023
MAPLE
A003485:= proc(n): ceil((n+1)/4) + ceil((n)/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: seq(A003485(n), n=0..62); # Johannes W. Meijer, Jun 07 2011
MATHEMATICA
CoefficientList[Series[(1+x+2x^2+4x^3)/((1-x)(1-x^4)), {x, 0, 70}], x] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 4, 8, 9}, 71] (* Harvey P. Dale, Jun 13 2011 *)
a[ n_] := 2*n + Max[0, 2-Mod[n-3, 4]]; (* Michael Somos, Dec 12 2023 *)
PROG
(Haskell)
a003485 n = a003485_list !! n
a003485_list = 1 : 2 : 4 : 8 : 9 : zipWith (+)
(drop 4 a003485_list) (zipWith (-) (tail a003485_list) a003485_list)
-- Reinhard Zumkeller, Mar 11 2012
(PARI) {a(n) = 2*n + max(0, 2 - (n-3)%4)}; /* Michael Somos, Dec 12 2023 */
CROSSREFS
Essentially the same as A047466.
Cf. A008621. - Johannes W. Meijer, Jun 07 2011
Cf. A209675.
Sequence in context: A044952 A352831 A047466 * A072602 A374664 A049642
KEYWORD
easy,nonn,nice
STATUS
approved