

A072602


Numbers such that in base 2 the number of 0's is >= the number of 1's.


7



2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 48, 49, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 88, 96, 97, 98, 100, 104, 112, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

T. D. Noe, Table of n, a(n) for n = 1..7555 (numbers up to 2^14)
Jason Bell, Thomas Finn Lidbetter, Jeffrey Shallit, Additive Number Theory via Approximation by Regular Languages, arXiv:1804.07996 [cs.FL], 2018.
Thomas Finn Lidbetter, Counting, Adding, and Regular Languages, Master's Thesis, University of Waterloo, Ontario, Canada, 2018.
Index entries for sequences related to binary expansion of n


EXAMPLE

8 is present because '1000' contains 3 '0's and 1 '1': 3 >= 1;
9 is present because '1001' contains 2 '0's and 2 '1's: 2 >= 2.


MATHEMATICA

Select[Range[150], DigitCount[#, 2, 0]>=DigitCount[#, 2, 1]&] (* Harvey P. Dale, May 09 2012 *)


PROG

(Haskell)
a072602 n = a072602_list !! (n1)
a072602_list = filter ((>= 0) . a037861) [1..]
 Reinhard Zumkeller, Mar 31 2015
(PARI) is(n)=2*hammingweight(n)<=exponent(n)+1 \\ Charles R Greathouse IV, Apr 18 2020


CROSSREFS

Cf. A007088, A000120, A023416, A072600, A072601, A031443, A072603.
Cf. A037861(a(n)) >= 0.
Sequence in context: A044952 A047466 A003485 * A049642 A326713 A328945
Adjacent sequences: A072599 A072600 A072601 * A072603 A072604 A072605


KEYWORD

nonn,base,easy


AUTHOR

Reinhard Zumkeller, Jun 23 2002


EXTENSIONS

Edited by N. J. A. Sloane, Jun 23 2009


STATUS

approved



