OFFSET
1,2
LINKS
T. D. Noe, Table of n, a(n) for n = 1..5370 (numbers < 2^13)
Jason Bell, Thomas Finn Lidbetter, Jeffrey Shallit, Additive Number Theory via Approximation by Regular Languages, arXiv:1804.07996 [cs.FL], 2018.
Thomas Finn Lidbetter, Counting, Adding, and Regular Languages, Master's Thesis, University of Waterloo, Ontario, Canada, 2018.
EXAMPLE
8 = 1000_2 is not present (one '1', three '0's).
10 is present because 10=1010_2 contains 2 '0's and 2 '1's: 2<=2;
11 is present because 11=1011_2 contains 1 '0' and 3 '1's: 1<=3.
MATHEMATICA
geQ[n_] := Module[{a, b}, {a, b} = DigitCount[n, 2]; a >= b]; Select[Range[103], geQ] (* T. D. Noe, Apr 20 2013 *)
Select[Range[110], DigitCount[#, 2, 1]>=DigitCount[#, 2, 0]&] (* Harvey P. Dale, Aug 12 2023 *)
PROG
(Haskell)
a072601 n = a072601_list !! (n-1)
a072601_list = filter ((<= 0) . a037861) [0..]
-- Reinhard Zumkeller, Aug 01 2013
(PARI) is(n)=2*hammingweight(n)>exponent(n) \\ Charles R Greathouse IV, Apr 18 2020
CROSSREFS
Cf. A037861(a(n)) <= 0.
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Jun 23 2002
STATUS
approved