OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The terms together with their prime indices begin:
2: {1} 36: {1,1,2,2} 74: {1,12}
4: {1,1} 38: {1,8} 75: {2,3,3}
8: {1,1,1} 40: {1,1,1,3} 76: {1,1,8}
9: {2,2} 44: {1,1,5} 80: {1,1,1,1,3}
10: {1,3} 46: {1,9} 81: {2,2,2,2}
12: {1,1,2} 48: {1,1,1,1,2} 82: {1,13}
14: {1,4} 52: {1,1,6} 86: {1,14}
16: {1,1,1,1} 58: {1,10} 88: {1,1,1,5}
22: {1,5} 60: {1,1,2,3} 92: {1,1,9}
24: {1,1,1,2} 62: {1,11} 94: {1,15}
26: {1,6} 63: {2,2,4} 96: {1,1,1,1,1,2}
27: {2,2,2} 64: {1,1,1,1,1,1} 98: {1,4,4}
28: {1,1,4} 68: {1,1,7} 99: {2,2,5}
32: {1,1,1,1,1} 70: {1,3,4} 104: {1,1,1,6}
34: {1,7} 72: {1,1,1,2,2} 106: {1,16}
For example, 63 is in the sequence because its prime indices {2,2,4} have a unique fixed point at the second position.
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Select[Range[100], pq[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]==1&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 08 2022
STATUS
approved