%I #7 May 15 2022 11:48:35
%S 2,4,8,9,10,12,14,16,22,24,26,27,28,32,34,36,38,40,44,46,48,52,58,60,
%T 62,63,64,68,70,72,74,75,76,80,81,82,86,88,92,94,96,98,99,104,106,108,
%U 110,112,116,117,118,120,122,124,125,128,130,132,134,135,136
%N Numbers whose weakly increasing prime indices y have exactly one fixed point y(i) = i.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e The terms together with their prime indices begin:
%e 2: {1} 36: {1,1,2,2} 74: {1,12}
%e 4: {1,1} 38: {1,8} 75: {2,3,3}
%e 8: {1,1,1} 40: {1,1,1,3} 76: {1,1,8}
%e 9: {2,2} 44: {1,1,5} 80: {1,1,1,1,3}
%e 10: {1,3} 46: {1,9} 81: {2,2,2,2}
%e 12: {1,1,2} 48: {1,1,1,1,2} 82: {1,13}
%e 14: {1,4} 52: {1,1,6} 86: {1,14}
%e 16: {1,1,1,1} 58: {1,10} 88: {1,1,1,5}
%e 22: {1,5} 60: {1,1,2,3} 92: {1,1,9}
%e 24: {1,1,1,2} 62: {1,11} 94: {1,15}
%e 26: {1,6} 63: {2,2,4} 96: {1,1,1,1,1,2}
%e 27: {2,2,2} 64: {1,1,1,1,1,1} 98: {1,4,4}
%e 28: {1,1,4} 68: {1,1,7} 99: {2,2,5}
%e 32: {1,1,1,1,1} 70: {1,3,4} 104: {1,1,1,6}
%e 34: {1,7} 72: {1,1,1,2,2} 106: {1,16}
%e For example, 63 is in the sequence because its prime indices {2,2,4} have a unique fixed point at the second position.
%t pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
%t Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==1&]
%Y * = unproved
%Y These are the positions of 1's in A352822.
%Y *The reverse version for no fixed points is A352826, counted by A064428.
%Y *The reverse version is A352827, counted by A001522 (strict A352829).
%Y The version for no fixed points is A352830, counted by A238394.
%Y These partitions are counted by A352832, compositions A240736.
%Y Allowing more than one fixed point gives A352872, counted by A238395.
%Y A000700 counts self-conjugate partitions, ranked by A088902.
%Y A001222 counts prime indices, distinct A001221.
%Y A008290 counts permutations by fixed points, nonfixed A098825.
%Y A056239 adds up prime indices, row sums of A112798 and A296150.
%Y A115720 and A115994 count partitions by their Durfee square.
%Y A238349 counts compositions by fixed points, complement A352523.
%Y A238352 counts reversed partitions by fixed points.
%Y A352833 counts partitions by fixed points.
%Y Cf. A062457, A064410, A065770, A177510, A257990, A342192, A349158, A351983, A352520, A352823, A352824.
%K nonn
%O 1,1
%A _Gus Wiseman_, Apr 08 2022