login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352834
Least k > 0 such that denominator( d(k*n)/(k*n) ) = n, or 0 if no such k exists, where d = A000005 is the number-of-divisors function.
2
1, 4, 1, 1, 1, 12, 1, 10, 12, 2, 1, 20, 1, 2, 1, 1, 1, 0, 1, 24, 1, 2, 1, 2, 1, 2, 1, 20, 1, 0, 1, 14, 1, 2, 1, 24, 1, 2, 1, 4, 1, 40, 1, 20, 12, 2, 1, 3, 1, 4, 1, 20, 1, 18, 1, 2, 1, 2, 1, 32, 1, 2, 12, 1, 1, 40, 1, 20, 1, 48, 1, 0, 1, 2, 36, 20, 1, 40, 1, 5, 1, 2, 1, 4, 1, 2, 1, 2, 1, 48
OFFSET
1,2
COMMENTS
This sequence is motivated by the fact that A091895(n) is always a multiple of n, so we list here the ratio A091895(n)/n.
Record values are a(1) = 1, a(2) = 4, a(6) = a(9) = 12, a(12) = 20,
a(20) = a(36) = 24, a(42) = a(66) = 40, a(70) = a(90) = a(110) = a(120) =
a(126) = a(130) = a(170) = a(190) = a(198) = 48, a(210) = a(330) = a(390) = 64,
a(420) = a(660) = a(780) = a(900) = a(1020) = 96,
a(1050) = a(1134) = 120, a(1470) = a(1680) = a(1890) = 144,
a(2310) = a(2730) = a(3150) = a(3570) = a(3990) = a(4290) = 192,
a(4320) = 210, a(6300) = 216, a(7560) = 240, a(9240) = a(10920) = 288,
a(13860) = a(16380) = a(17820) = a(20020) = 336, a(20790) = 360,
a(23760) = a(28080) = 420, a(34650) = a(40950) = 432,
a(41580) = a(49140) = 480, a(60060) = a(78540) = a(80850) = a(87780) = 576,
a(90090) = 672, ...
Up to n = 10^6, the terms are bounded by a(n) < 16*n^(1/3). The largest ratios r(n) := a(n)/n^(1/3) are r(2310) ~ 14.5, r(23760) ~ 14.6, r(60060) ~ 14.7, r(90090) ~ 14.99, r(154440) ~ 15.66, r(201960) = 14.3, r(270270) = 14.85, r(420420) = 14.4, r(510510) = 14.4, r(720720) = 14.05, ...
FORMULA
a(n) = A091895(n)/n; a(n) = 0 iff n is in A091896.
Conjecture: a(n) = O(n^(1/3)).
PROG
(PARI) apply( {A352834(n, L=n^2*2)=forstep(k=n, L, n, denominator(numdiv(k)/k)==n&&return(k/n))}, [1..99])
CROSSREFS
Cf. A000005 (number-of-divisors function), A090395 (denominator of d(n)/n), A091895 (a(n)*n), A091896 (indices of zeros of a(n)).
Sequence in context: A222317 A063851 A124777 * A203639 A358319 A265679
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 04 2022
STATUS
approved