OFFSET
1,4
FORMULA
Dirichlet g.f.: (zeta(s-1)^2 / zeta(s)) * Product_{primes p} (1 - 2 / p^(s-1)).
Dirichlet inverse b(n), n > 0, is multiplicative with b(p^e) = (p^2 * (2*p)^(e-1) - (p-1)^2) / (2*p-1) for prime p and e > 0.
Conjecture: a(n) = Sum_{k=1..n} gcd(k, n) * A076479(gcd(k, n)) for n > 0.
MATHEMATICA
f[p_, e_]: = ((p-2) - (p-1) * e) * p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2022 *)
PROG
(PARI) a(n, f=factor(n))=prod(i=1, #f~, ((f[i, 1]-2) - (f[i, 1]-1) * f[i, 2]) * f[i, 1]^(f[i, 2]-1)) \\ Charles R Greathouse IV, Nov 09 2022
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Werner Schulte, Nov 09 2022
STATUS
approved