OFFSET
1,1
COMMENTS
EXAMPLE
The terms together with their prime indices begin:
2: {1} 28: {1,1,4} 56: {1,1,1,4}
4: {1,1} 30: {1,2,3} 58: {1,10}
6: {1,2} 32: {1,1,1,1,1} 60: {1,1,2,3}
8: {1,1,1} 34: {1,7} 62: {1,11}
9: {2,2} 36: {1,1,2,2} 63: {2,2,4}
10: {1,3} 38: {1,8} 64: {1,1,1,1,1,1}
12: {1,1,2} 40: {1,1,1,3} 66: {1,2,5}
14: {1,4} 42: {1,2,4} 68: {1,1,7}
16: {1,1,1,1} 44: {1,1,5} 70: {1,3,4}
18: {1,2,2} 45: {2,2,3} 72: {1,1,1,2,2}
20: {1,1,3} 46: {1,9} 74: {1,12}
22: {1,5} 48: {1,1,1,1,2} 75: {2,3,3}
24: {1,1,1,2} 50: {1,3,3} 76: {1,1,8}
26: {1,6} 52: {1,1,6} 78: {1,2,6}
27: {2,2,2} 54: {1,2,2,2} 80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
MATHEMATICA
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
Select[Range[100], pq[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]>0&]
CROSSREFS
* = unproved
These are the nonzero positions in A352822.
A114088 counts partitions by excedances.
A122111 represents partition conjugation using Heinz numbers.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 06 2022
STATUS
approved