login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333337
Indices of rows of n consecutive smallest primes in A333238, or -1 if n consecutive smallest primes do not appear in A333238.
0
0, 1, 2, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 25, 27, 24, 28, 33, 35, 30, 39, 44, 45, 49, 51, 55, 63, 57, 65, 69, 75, 77, 81, 85, 60, 76, 87, 91, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 135, 143, 145, 147, 153, 155, 161, 169, 159, 165, 171, 175, 177
OFFSET
0,3
COMMENTS
Consider the irregular table where row m lists the distinct smallest primes p of prime partitions of m. Row n of this sequence contains all m that have n consecutive primes starting with 2.
Alternatively, positions of k-repunits in A333259.
A330507(n) = First terms in row n.
Null rows occur at n = {90, 151, 349, 352, 444, ...} and are thus filled with the term -1.
EXAMPLE
Table begins:
0: 0 1
1: 2 4
2: 6 8 9
3: 10 12 15 16
4: 18 20 21 25 27
5: 24 28 33 35
6: 30 39 44 45 49
7: 51 55 63
8: 57 65
9: 60 76 87 91 95
10: 69 75 77 81 85
11: 99 105
12: 111 115 117 119 121
13: 123 125 135
14: 143 145
15: 147 153 155 161 169
16: 159 165 171 175
17: 177 185 187
Consider the table plotting prime p in row m of A333238 at pi(p) place; intervening primes missing from row m are shown by "." as a place holder:
m Primes in row m of A333238
---------------------------------
2: 2
3: . 3
4: 2
5: 2 . 5
6: 2 3
7: 2 . . 7
8: 2 3
9: 2 3
10: 2 3 5
11: 2 3 . . 11
12: 2 3 5
13: 2 3 . . . 13
14: 2 3 . 7
15: 2 3 5
16: 2 3 5
17: 2 3 5 . . . 17
...
There are no primes in rows 0 or 1 of A333238, thus row 0 of this sequence contains {0, 1}.
The smallest prime, 2, appears alone in rows 2 and 4 of A333238, thus row 1 of this sequence contains {2, 4}.
We have the primes {2, 3} and no other primes in rows {6, 8, 9} in A333238, thus row 2 of this sequence contains {6, 8, 9}.
We have the primes {2, 3, 5} and no other primes in rows {10, 12, 15, 16} in A333238, thus row 3 of this sequence contains {10, 12, 15, 16}, etc.
MATHEMATICA
Block[{m = 120, s, a}, a = ConstantArray[{}, m]; s = {Prime@ PrimePi@ m}; Do[If[# <= m, If[FreeQ[a[[#]], Last@ s], a = ReplacePart[a, # -> Union@ Append[a[[#]], Last@ s]], Nothing]; AppendTo[s, Last@ s], If[Last@ s == 2, s = DeleteCases[s, 2]; If[Length@s == 0, Break[], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]], s = MapAt[Prime[PrimePi[#] - 1] &, s, -1]]] &@ Total[s], {i, Infinity}]; s = {0}~Join~Map[Which[Length@ # == 0, 0, And[Length@ # == 1, First@ # == 2], 1, True, If[Union@ # == {1}, Length@ # + 1, -1] &[Differences@ PrimePi@ #, {} -> {2}]] &, a]; Array[-1 + Position[s, #][[All, 1]] /. k_ /; MissingQ@ k -> {-1} &, Max@ s + 1, 0]]
CROSSREFS
KEYWORD
tabf,sign
STATUS
approved