login
A333338
Numbers k such that sigma_2(k) = sigma_2(phi(k)).
0
1, 7, 11891, 130801, 273493, 1438811, 3008423, 6290339, 15826921, 33092653, 69193729, 144677797, 174096131, 364019183, 761131019, 1591455767, 1915057441, 3327589331, 4004211013, 8372441209, 17506013437, 21065631851, 36603482641, 44046321143, 76534554613, 92096853299
OFFSET
1,2
COMMENTS
The sequence is infinite since it contains all the numbers of the form 11^i*23^j*47 for i,j > 0. Up to 10^11 the only terms not of this form are 1 and 7. - Giovanni Resta, Mar 15 2020
EXAMPLE
50 = 1^2 + 7^2 (sum of the squares of the divisors of 7) = 1^2 + 2^2 + 3^2 + 6^2 (sum of the squares of the divisors of 6 = phi(7)). So 7 is in the sequence.
MATHEMATICA
Select[Range[10!], DivisorSigma[2, #]==DivisorSigma[2, EulerPhi[#]]&]
PROG
(PARI) isok(m) = sigma(m, 2) == sigma(eulerphi(m), 2); \\ Michel Marcus, Mar 15 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ivan N. Ianakiev, Mar 14 2020
EXTENSIONS
More terms from Giovanni Resta, Mar 15 2020
STATUS
approved