login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344532
Number of cycle-up-down permutations of [n^2] having n cycles.
3
1, 1, 7, 14698, 51629528080, 914192102910317528125, 199979553262025879510473132453855232, 1131253316618666789979709230473744963049785439771172168, 309491168658231587025767619097898747214052900521443034546657433273562730332160
OFFSET
0,3
COMMENTS
For the definition of cycle-up-down permutations see A186366.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = (n^2)! * [x^(n^2) y^n] 1/(1-sin(x))^y.
a(n) = A186366(n^2,n).
EXAMPLE
a(2) = 7: (1)(243), (143)(2), (142)(3), (132)(4), (12)(34), (13)(24), (14)(23).
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
g:= proc(n) option remember; expand(`if`(n=0, 1,
add(g(n-j)*binomial(n-1, j-1)*x*b(j-1, 0), j=1..n)))
end:
a:= n-> coeff(g(n^2), x, n):
seq(a(n), n=0..9);
MATHEMATICA
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
g[n_] := g[n] = Expand[If[n == 0, 1,
Sum[g[n-j]*Binomial[n-1, j-1]*x*b[j-1, 0], {j, 1, n}]]];
a[n_] := Coefficient[g[n^2], x, n];
a /@ Range[0, 9] (* Jean-François Alcover, Jun 10 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 22 2021
STATUS
approved