login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218141
a(n) = Stirling2(n^2, n).
4
1, 1, 7, 3025, 171798901, 2436684974110751, 14204422416132896951197888, 50789872166903636182659702516635946082, 155440114706926165785630654089245708839702615196926765, 541500903058656141876322139677626107784896646583041951351456223689104719
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Sum_{k>=0} k^(n*k) * exp(-k^n*x) * x^k / k!.
a(n) = [x^(n^2-n)] 1 / Product_{k=1..n} (1-k*x).
a(n) ~ n^(n^2)/n!. - Vaclav Kotesovec, May 11 2014
EXAMPLE
O.g.f.: A(x) = 1 + x + 7*x^2 + 3025*x^3 + 171798901*x^4 + 2436684974110751*x^5 +...
MATHEMATICA
Table[StirlingS2[n^2, n], {n, 0, 10}] (* Vaclav Kotesovec, May 11 2014 *)
PROG
(PARI) {a(n)=polcoeff(sum(k=0, n, (k^n)^k*exp(-k^n*x +x*O(x^n))*x^k/k!), n)}
(PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2+1))), n^2-n)}
(PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(n^2, n)}
for(n=0, 10, print1(a(n), ", "))
(Maxima) makelist(stirling2(n^2, n), n, 0, 30 ); /* Martin Ettl, Oct 21 2012 */
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 21 2012
STATUS
approved