login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cycle-up-down permutations of [n^2] having n cycles.
3

%I #19 Jun 10 2021 07:42:40

%S 1,1,7,14698,51629528080,914192102910317528125,

%T 199979553262025879510473132453855232,

%U 1131253316618666789979709230473744963049785439771172168,309491168658231587025767619097898747214052900521443034546657433273562730332160

%N Number of cycle-up-down permutations of [n^2] having n cycles.

%C For the definition of cycle-up-down permutations see A186366.

%H Alois P. Heinz, <a href="/A344532/b344532.txt">Table of n, a(n) for n = 0..22</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F a(n) = (n^2)! * [x^(n^2) y^n] 1/(1-sin(x))^y.

%F a(n) = A186366(n^2,n).

%e a(2) = 7: (1)(243), (143)(2), (142)(3), (132)(4), (12)(34), (13)(24), (14)(23).

%p b:= proc(u, o) option remember; `if`(u+o=0, 1,

%p add(b(o-1+j, u-j), j=1..u))

%p end:

%p g:= proc(n) option remember; expand(`if`(n=0, 1,

%p add(g(n-j)*binomial(n-1, j-1)*x*b(j-1, 0), j=1..n)))

%p end:

%p a:= n-> coeff(g(n^2), x, n):

%p seq(a(n), n=0..9);

%t b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];

%t g[n_] := g[n] = Expand[If[n == 0, 1,

%t Sum[g[n-j]*Binomial[n-1, j-1]*x*b[j-1, 0], {j, 1, n}]]];

%t a[n_] := Coefficient[g[n^2], x, n];

%t a /@ Range[0, 9] (* _Jean-François Alcover_, Jun 10 2021, after _Alois P. Heinz_ *)

%Y Cf. A186366, A218141, A344445.

%K nonn

%O 0,3

%A _Alois P. Heinz_, May 22 2021