login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134645
Number of 2n X 3n (0,1,2)-matrices with every row sum 3 and column sum 2.
2
7, 16260, 747558000, 250071339672000, 369820640830881240000, 1796185853884657144990080000, 23511842995969107700302647865600000, 720289186703359375552628986978410240000000, 46455761324619133018320834819622638940550400000000, 5809177204262302555518772962193269714031251010176000000000
OFFSET
1,1
REFERENCES
Zhonghua Tan, Shanzhen Gao, Kenneth Mathies, Joshua Fallon, Counting (0,1,2)-Matrices, Congressus Numeratium, December 2008.
FORMULA
Let t(m,n)=6^{-m} sum_{i=0}^{m}frac{3^{i}m!n!(2n-2i)!}{i!(m-i)!(n-i)!2^{n-i}}; then a(n) = t(2n,3n).
a(n) = (3n)!(2n)!288^(-n) * Sum_{i=0..2n} (6n-2i)!6^i/(i!(3n-i)!(2n-i)!). - Shanzhen Gao, Mar 02 2010
a(n) ~ sqrt(Pi) * 2^(n+1) * 3^(4*n + 1/2) * n^(6*n + 1/2) / exp(6*n-1). - Vaclav Kotesovec, Oct 21 2023
EXAMPLE
a(1) = 7:
111 210 (6 ways)
111 012
MAPLE
f:=proc(m, n) 6^(-m)*add( (3^i*m!*n!*(2*n-2*i)!)/ (i!*(m-i)!*(n-i)!*2^(n-i)), i=0..m); end;
MATHEMATICA
Table[(3*n)! * (2*n)! / 288^n * Sum[(6*n - 2*i)! * 6^i / (i! * (3*n - i)! * (2*n - i)!), {i, 0, 2*n}], {n, 1, 15}] (* Vaclav Kotesovec, Oct 21 2023 *)
Table[(2/9)^n * (3*n)! * ((6*n - 1)/2)! * Hypergeometric1F1[-2*n, 1/2 - 3*n, 3/2] / Sqrt[Pi], {n, 1, 15}] (* Vaclav Kotesovec, Oct 21 2023 *)
CROSSREFS
Sequence in context: A344532 A280813 A203685 * A327840 A115997 A013786
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Nov 05 2007
EXTENSIONS
Corrected, edited and extended with Maple program by R. H. Hardin and N. J. A. Sloane, Oct 18 2009
STATUS
approved