login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327840
Numbers m that divide 4^m + 3.
5
1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073
OFFSET
1,2
COMMENTS
Number of solutions < 10^9 to k^n == k-1 (mod n): 1 (if k = 1), 188 (if k = 2, see A006521), 5 (if k = 3, see A015973), 5 (if k = 4, see this sequence), 5 (if k = 5), 10 (if k = 6), 10 (if k = 7), 7 (if k = 8), 5 (if k = 9), 8 (if k = 10), 11 (if k = 11), 8 (if k = 12), 9 (if k = 13), 4 (if k = 14), 3 (if k = 15), 6 (if k = 16), 7 (if k = 17), 7 (if k = 18), ...
a(9) > 10^15. - Max Alekseyev, Nov 10 2022
MATHEMATICA
Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)
PROG
(Magma) [1] cat [n: n in [1..10^8] | Modexp(4, n, n) + 3 eq n];
(PARI) is(n)=Mod(4, n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019
CROSSREFS
Solutions to k^n == 1-k (mod n): A006521 (k = 2), A015973 (k = 3), this sequence (k = 4), A123047 (k = 5), A327943 (k = 6).
Solutions to 4^n == k (mod n): A000079 (k = 0), A015950 (k = -1), A014945 (k = 1), A130421 (k = 2), this sequence (k = -3), A130422 (k = 3).
Sequence in context: A280813 A203685 A134645 * A115997 A013786 A351326
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
a(6)-a(7) from Giovanni Resta, Sep 29 2019
a(8) from Max Alekseyev, Nov 10 2022
STATUS
approved