login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327839
Decimal expansion of the asymptotic density of numbers whose number of divisors is a power of 2 (A036537).
14
6, 8, 7, 8, 2, 7, 1, 3, 9, 4, 4, 3, 6, 2, 4, 8, 8, 1, 0, 6, 3, 5, 1, 0, 8, 2, 4, 5, 4, 9, 8, 7, 0, 9, 8, 3, 2, 0, 3, 0, 9, 5, 8, 7, 5, 3, 0, 1, 0, 1, 5, 2, 1, 7, 1, 0, 5, 6, 4, 0, 1, 6, 9, 0, 8, 8, 7, 4, 8, 4, 9, 1, 6, 4, 6, 2, 8, 2, 9, 6, 3, 5, 9, 4, 7, 0, 7
OFFSET
0,1
LINKS
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175, No. 4 (2016), pp. 385-395, alternative link.
FORMULA
Equals Product_{p prime} (1 - 1/p) * (1 + Sum_{i>=1} 1/p^(2^i-1)).
Equals lim_{k->oo} A036538(k)/2^k.
EXAMPLE
0.687827139443624881063510824549870983203095875301015...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Log[(1 - x)*(1 + Sum[x^(2^e - 1), {e, 1, em}])]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
CROSSREFS
Sequence in context: A133748 A225037 A157852 * A365125 A088608 A323984
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 27 2019
STATUS
approved