login
A327837
Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).
10
1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
OFFSET
1,2
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (constant Z3).
Abdelhakim Smati and Jie Wu, On the exponential divisor function, Publications de l'Institut Mathématique, Vol. 61 (1997), pp. 21-32.
László Tóth, An order result for the exponential divisor function, Publ. Math. Debrecen, Vol. 71, No. 1-2 (2007), pp. 165-171, arXiv preprint,, arXiv:0708.3552 [math.NT], 2007.
Jie Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, Journal de théorie des nombres de Bordeaux, Vol. 7, No. 1, (1995), pp. 133-141.
FORMULA
Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
EXAMPLE
1.602317102305418052349626315621161003776939495785572...
MATHEMATICA
$MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
CROSSREFS
Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).
Sequence in context: A070062 A274542 A351234 * A261166 A021170 A329093
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 27 2019
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 13 2021
STATUS
approved