login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327834
Expansion of 1 / AGM(1, 1 - 8*x)^2 in powers of x.
0
1, 8, 56, 384, 2648, 18496, 131008, 940032, 6821848, 49985984, 369258560, 2746629120, 20549693888, 154518118912, 1166873394688, 8844937101312, 67265481552856, 513038965707968, 3923108472072512, 30068733313938432, 230943237733355840, 1777114026405752320
OFFSET
0,2
COMMENTS
AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
LINKS
Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean
FORMULA
Recurrence: n^3*a(n) = 4*(2*n - 1)*(3*n^2 - 3*n + 2)*a(n-1) - 16*(n-1)*(13*n^2 - 26*n + 20)*a(n-2) + 128*(2*n - 3)*(3*n^2 - 9*n + 8)*a(n-3) - 1024*(n-2)^3*a(n-4).
a(n) ~ 2^(3*n + 3) * (log(4*n) + gamma) / (Pi^2 * n), where gamma is the Euler-Mascheroni constant A001620.
MATHEMATICA
CoefficientList[Series[(2*EllipticK[1/(1 - 1/(4*x))^2]/(Pi*(1 - 4*x)))^2, {x, 0, 25}], x]
CoefficientList[Series[Hypergeometric2F1[1/2, 1/2, 1, 16*x*(1 - 4*x)]^2, {x, 0, 25}], x]
CROSSREFS
Sequence in context: A003494 A057084 A101596 * A092521 A156088 A002914
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 27 2019
STATUS
approved