login
A327831
Numbers m such that sigma(m)*tau(m) is a square but sigma(m)/tau(m) is not an integer.
2
232, 2152, 3240, 3560, 3944, 6516, 17908, 22504, 23716, 26172, 32360, 34344, 36584, 37736, 43300, 45612, 48204, 55080, 55912, 60520, 61480, 69352, 73084, 78184, 79056, 79300, 96552, 104168, 105832, 106088, 125356, 130432, 133864, 140040, 149992, 163764, 168424, 172840, 176360, 183204
OFFSET
1,1
COMMENTS
If sigma(m)/tau(m) is a square (m is in A144695) then sigma(m)*tau(m) is also a square (m is in A327830), but the converse is false (see 232 in the Example section). This sequence consists of these counterexamples.
It seems that all terms are even. - Marius A. Burtea, Oct 15 2019
EXAMPLE
sigma(232) = 450 and tau(232) = 8, so sigma(232)*tau(232) = 450*8 = 3600 = 60^2 and sigma(232)/tau(232) = 450/8 = 225/4 is not an integer, hence 232 is a term.
MAPLE
filter:= u -> sigma(u)/tau(u) <> floor(sigma(u)/tau(u)) and issqr(sigma(u)*tau(u)) : select(filter, [$1..100000]);
MATHEMATICA
sQ[n_] := IntegerQ@Sqrt[n]; aQ[n_] := sQ[(d = DivisorSigma[0, n]) * (s = DivisorSigma[1, n])] && !sQ[s/d]; Select[Range[2*10^5], aQ] (* Amiram Eldar, Oct 15 2019 *)
PROG
(PARI) isok(m) = my(s=sigma(m), t=numdiv(m)); issquare(s*t) && (s % t); \\ Michel Marcus, Oct 15 2019
(Magma) [k:k in [1..200000] | not IsIntegral(a/b) and IsSquare(a*b) where a is DivisorSigma(1, k) where b is #Divisors(k)]; // Marius A. Burtea, Oct 15 2019
CROSSREFS
Equals A144695 \ A327830.
Similar to A327624 with sigma(m) and phi(m).
Cf. A003601 (sigma(m)/tau(m) is an integer), A023883 (sigma(m)/tau(m) is an integer and m is nonprime).
Cf. A000005 (tau), A000203 (sigma).
Sequence in context: A234683 A366816 A238919 * A234682 A156391 A279660
KEYWORD
nonn
AUTHOR
Bernard Schott, Oct 14 2019
STATUS
approved