OFFSET
1,1
COMMENTS
If sigma(m)/tau(m) is a square (m is in A144695) then sigma(m)*tau(m) is also a square (m is in A327830), but the converse is false (see 232 in the Example section). This sequence consists of these counterexamples.
It seems that all terms are even. - Marius A. Burtea, Oct 15 2019
EXAMPLE
sigma(232) = 450 and tau(232) = 8, so sigma(232)*tau(232) = 450*8 = 3600 = 60^2 and sigma(232)/tau(232) = 450/8 = 225/4 is not an integer, hence 232 is a term.
MAPLE
filter:= u -> sigma(u)/tau(u) <> floor(sigma(u)/tau(u)) and issqr(sigma(u)*tau(u)) : select(filter, [$1..100000]);
MATHEMATICA
sQ[n_] := IntegerQ@Sqrt[n]; aQ[n_] := sQ[(d = DivisorSigma[0, n]) * (s = DivisorSigma[1, n])] && !sQ[s/d]; Select[Range[2*10^5], aQ] (* Amiram Eldar, Oct 15 2019 *)
PROG
(PARI) isok(m) = my(s=sigma(m), t=numdiv(m)); issquare(s*t) && (s % t); \\ Michel Marcus, Oct 15 2019
(Magma) [k:k in [1..200000] | not IsIntegral(a/b) and IsSquare(a*b) where a is DivisorSigma(1, k) where b is #Divisors(k)]; // Marius A. Burtea, Oct 15 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Oct 14 2019
STATUS
approved