|
|
A023883
|
|
Nonprimes whose average of divisors is an integer.
|
|
7
|
|
|
1, 6, 14, 15, 20, 21, 22, 27, 30, 33, 35, 38, 39, 42, 44, 45, 46, 49, 51, 54, 55, 56, 57, 60, 62, 65, 66, 68, 69, 70, 77, 78, 85, 86, 87, 91, 92, 93, 94, 95, 96, 99, 102, 105, 110, 111, 114, 115, 116, 118, 119, 123, 125, 126, 129, 132, 133, 134, 135, 138
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Nonprime numbers k such that sigma(k) == 0 (mod tau(k)). - Paolo P. Lava, Jun 11 2013
Some subsequences of these nonprimes arithmetic numbers.
- Squares of primes of the form 6k+1 (A002476).
- Cubes of odd primes (A030078 \ {8}).
- Semiprimes 2*p where prime p is of the form 4k+3 (A002145).
- Semiprimes 3*p where p prime <> 3 (A001748 \ {9}).
- Integers 4*p where prime p is of the form 6k-1 (A007528). (End)
|
|
LINKS
|
|
|
EXAMPLE
|
Sigma(22) = 36, tau(22) = 4, sigma(22)/tau(2) = 9, 22 is not prime, hence 22 belongs to this sequence.
|
|
MAPLE
|
with(numtheory); ListA023883:=proc(q) local n;
for n from 1 to q do if not isprime(n) then if sigma(n) mod tau(n)=0 then
print(n); fi; fi; od; end: ListA023883(10^6); # Paolo P. Lava, Jun 11 2013
|
|
MATHEMATICA
|
Select[{Mean[Divisors[#]], #}& /@ Select[Range[140], !PrimeQ[#]&], IntegerQ[#[[1]]]&][[All, 2]] (* Jean-François Alcover, Oct 31 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|