This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023882 Expansion of g.f.: 1/Product_{n>0} (1 - n^n * x^n). 12
 1, 1, 5, 32, 304, 3537, 52010, 895397, 18016416, 410889848, 10523505770, 298220329546, 9274349837081, 313761671751672, 11474635626789410, 450964042480390679, 18954785687060988578, 848386888530723146912 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..380 FORMULA Log of g.f.: Sum_{k>=1} (sigma(k, k+1)/k) x^k, where sigma(k, q) is the sum of the q-th powers of the divisors of k. a(n) ~ n^n * (1 + exp(-1)/n + (1/2*exp(-1)+5*exp(-2))/n^2). - Vaclav Kotesovec, Dec 19 2015 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294645(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 09 2017 MAPLE seq(coeff(series(1/mul(1-k^k*x^k, k=1..n), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018 MATHEMATICA nmax=20; CoefficientList[Series[Product[1/(1-k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *) PROG (PARI) m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-k^k*x^k))) \\ G. C. Greubel, Oct 30 2018 (MAGMA) m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018 CROSSREFS Cf. A265949, A292312, A294645. Sequence in context: A023880 A104031 A294957 * A109780 A093448 A094653 Adjacent sequences:  A023879 A023880 A023881 * A023883 A023884 A023885 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:11 EDT 2019. Contains 328336 sequences. (Running on oeis4.)