login
A294957
Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^(k-1)).
3
1, 1, 5, 32, 300, 3533, 51650, 894929, 17981196, 410826036, 10518152538, 298209605418, 9273131902539, 313758357802886, 11474239675400172, 450962279143408815, 18954601400362304902, 848385358833157331498, 40285279861744621069122
OFFSET
0,3
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n^(n-1), g(n) = n.
LINKS
FORMULA
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294956(k)*a(n-k) for n > 0.
PROG
(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k*x^k)^k^(k-1)))
CROSSREFS
Cf. A294956.
Sequence in context: A307497 A023880 A104031 * A363397 A023882 A109780
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 12 2017
STATUS
approved