OFFSET
0,3
COMMENTS
Euler transform of A060354.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A060354(k).
a(n) ~ exp(2*Zeta'(-1) + 3*Zeta(3) / (8*Pi^2) - Pi^16 / (1036800000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (36000 * Zeta(5)^2) - 2*Zeta(3)^2 / (15*Zeta(5)) + Zeta'(-3)/2 + (-Pi^12 / (3600000 * 2^(2/5) * 3^(1/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (150 * 2^(2/5) * 3^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (12000 * 2^(4/5) * 3^(2/5) * Zeta(5)^(7/5)) + 2^(1/5) * Zeta(3) / (3*Zeta(5))^(2/5)) * n^(2/5) - (Pi^4 / (60 * 2^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5*(3*Zeta(5))^(1/5) / 2^(8/5)) * n^(4/5)) * (3*Zeta(5))^(53/400) / (2^(47/200) * sqrt(5*Pi) * n^(253/400)). - Vaclav Kotesovec, Nov 12 2017
MAPLE
N:=100:
S:= series(mul(1/(1 - x^k)^(k*((k-2)^2+k)/2), k=1..N), x, N+1):
seq(coeff(S, x, k), k=0..N); # Robert Israel, Nov 12 2017
MATHEMATICA
nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(k ((k - 2)^2 + k)/2), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 ((d - 2)^2 + d)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 12 2017
STATUS
approved