login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060354
The n-th n-gonal number: a(n) = n*(n^2 - 3*n + 4)/2.
37
0, 1, 2, 6, 16, 35, 66, 112, 176, 261, 370, 506, 672, 871, 1106, 1380, 1696, 2057, 2466, 2926, 3440, 4011, 4642, 5336, 6096, 6925, 7826, 8802, 9856, 10991, 12210, 13516, 14912, 16401, 17986, 19670, 21456, 23347, 25346, 27456, 29680, 32021
OFFSET
0,3
COMMENTS
Binomial transform of (0,1,0,3,0,0,0,...). - Paul Barry, Sep 14 2006
Also the number of permutations of length n which can be sorted by a single cut-and-paste move (in the sense of Cranston, Sudborough, and West). - Vincent Vatter, Aug 21 2013
Main diagonal of A317302. - Omar E. Pol, Aug 11 2018
LINKS
D. W. Cranston, I. H. Sudborough, and D. B. West, Short proofs for cut-and-paste sorting of permutations, Discrete Math. 307, 22 (2007), 2866-2870.
Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
C. Homberger, V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946 [math.CO], 2013-2015.
FORMULA
a(n) = (n*(n-2)^2 + n^2)/2.
E.g.f.: exp(x)*x*(1+x^2/2). - Paul Barry, Sep 14 2006
G.f.: x*(1-2*x+4*x^2)/(1-x)^4. - R. J. Mathar, Sep 02 2008
a(n) = A057145(n,n). - R. J. Mathar, Jul 28 2016
a(n) = A000124(n-2) * n. - Bruce J. Nicholson, Jul 13 2018
a(n) = Sum_{i=0..n-1} (i*(n-2) + 1). - Ivan N. Ianakiev, Sep 25 2020
MAPLE
A060354 := proc(n)
(n*(n-2)^2+n^2)/2 ;
end proc: # R. J. Mathar, Jul 28 2016
MATHEMATICA
Table[(n (n-2)^2+n^2)/2, {n, 0, 50}] (* Harvey P. Dale, Aug 05 2011 *)
CoefficientList[Series[x (1 - 2 x + 4 x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 16 2015 *)
Table[PolygonalNumber[n, n], {n, 0, 50}] (* Harvey P. Dale, Mar 07 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 2, 6}, 50] (* Harvey P. Dale, Mar 07 2016 *)
PROG
(PARI) a(n) = { (n*(n - 2)^2 + n^2)/2 } \\ Harry J. Smith, Jul 04 2009
(Magma) [(n*(n-2)^2+n^2)/2: n in [0..50]]; // Vincenzo Librandi, Feb 16 2015
CROSSREFS
First differences of A004255.
Sequence in context: A280400 A199477 A330884 * A140131 A159938 A325743
KEYWORD
easy,nice,nonn,changed
AUTHOR
Hareendra Yalamanchili (hyalaman(AT)mit.edu), Apr 01 2001
STATUS
approved