login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The n-th n-gonal number: a(n) = n*(n^2 - 3*n + 4)/2.
37

%I #80 Dec 30 2024 22:43:22

%S 0,1,2,6,16,35,66,112,176,261,370,506,672,871,1106,1380,1696,2057,

%T 2466,2926,3440,4011,4642,5336,6096,6925,7826,8802,9856,10991,12210,

%U 13516,14912,16401,17986,19670,21456,23347,25346,27456,29680,32021

%N The n-th n-gonal number: a(n) = n*(n^2 - 3*n + 4)/2.

%C Binomial transform of (0,1,0,3,0,0,0,...). - _Paul Barry_, Sep 14 2006

%C Also the number of permutations of length n which can be sorted by a single cut-and-paste move (in the sense of Cranston, Sudborough, and West). - _Vincent Vatter_, Aug 21 2013

%C Main diagonal of A317302. - _Omar E. Pol_, Aug 11 2018

%H Harry J. Smith, <a href="/A060354/b060354.txt">Table of n, a(n) for n = 0..1000</a>

%H D. W. Cranston, I. H. Sudborough, and D. B. West, <a href="http://dx.doi.org/10.1016/j.disc.2007.01.011">Short proofs for cut-and-paste sorting of permutations</a>, Discrete Math. 307, 22 (2007), 2866-2870.

%H Cheyne Homberger, <a href="http://arxiv.org/abs/1410.2657">Patterns in Permutations and Involutions: A Structural and Enumerative Approach</a>, arXiv preprint 1410.2657 [math.CO], 2014.

%H Homberger and Vatter, <a href="http://www.math.ufl.edu/~vatter/publications/poly-classes/">On the effective and automatic enumeration of polynomial permutation classes</a>. [Broken link]

%H C. Homberger, V. Vatter, <a href="http://arxiv.org/abs/1308.4946">On the effective and automatic enumeration of polynomial permutation classes</a>, arXiv preprint arXiv:1308.4946 [math.CO], 2013-2015.

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = (n*(n-2)^2 + n^2)/2.

%F E.g.f.: exp(x)*x*(1+x^2/2). - _Paul Barry_, Sep 14 2006

%F G.f.: x*(1-2*x+4*x^2)/(1-x)^4. - _R. J. Mathar_, Sep 02 2008

%F a(n) = A057145(n,n). - _R. J. Mathar_, Jul 28 2016

%F a(n) = A000124(n-2) * n. - _Bruce J. Nicholson_, Jul 13 2018

%F a(n) = Sum_{i=0..n-1} (i*(n-2) + 1). - _Ivan N. Ianakiev_, Sep 25 2020

%p A060354 := proc(n)

%p (n*(n-2)^2+n^2)/2 ;

%p end proc: # _R. J. Mathar_, Jul 28 2016

%t Table[(n (n-2)^2+n^2)/2,{n,0,50}] (* _Harvey P. Dale_, Aug 05 2011 *)

%t CoefficientList[Series[x (1 - 2 x + 4 x^2) / (1 - x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, Feb 16 2015 *)

%t Table[PolygonalNumber[n,n],{n,0,50}] (* _Harvey P. Dale_, Mar 07 2016 *)

%t LinearRecurrence[{4,-6,4,-1},{0,1,2,6},50] (* _Harvey P. Dale_, Mar 07 2016 *)

%o (PARI) a(n) = { (n*(n - 2)^2 + n^2)/2 } \\ _Harry J. Smith_, Jul 04 2009

%o (Magma) [(n*(n-2)^2+n^2)/2: n in [0..50]]; // _Vincenzo Librandi_, Feb 16 2015

%Y First differences of A004255.

%Y Cf. A000124, A100177, A057145.

%K easy,nice,nonn,changed

%O 0,3

%A Hareendra Yalamanchili (hyalaman(AT)mit.edu), Apr 01 2001