login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292312 Expansion of Product_{k>=1} (1 - k^k*x^k). 6
1, -1, -4, -23, -229, -2761, -42615, -758499, -15702086, -365588036, -9516954786, -273061566624, -8575969258607, -292418459301779, -10762887030763337, -425243370397722674, -17953905924215881215, -806666656048846472309 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..386

FORMULA

Convolution inverse of A023882.

a(n) ~ -n^n * (1 - exp(-1)/n - (exp(-1)/2 + 4*exp(-2))/n^2). - Vaclav Kotesovec, Sep 14 2017

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294645(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 09 2017

MAPLE

seq(coeff(series(mul((1-k^k*x^k), k=1..n), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 31 2018

MATHEMATICA

terms = 18; CoefficientList[Product[(1 - k^k*x^k), {k, 1, terms}] + O[x]^(terms), x] (* Jean-Fran├žois Alcover, Nov 11 2017 *)

PROG

(PARI) {a(n) = polcoeff(prod(k=1, n, 1-k^k*x^k+x*O(x^n)), n)}

(MAGMA) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 - k^k*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018

CROSSREFS

Column k=1 of A294653.

Cf. A023882, A265949.

Sequence in context: A305787 A295234 A306152 * A316083 A326501 A123637

Adjacent sequences:  A292309 A292310 A292311 * A292313 A292314 A292315

KEYWORD

sign

AUTHOR

Seiichi Manyama, Sep 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 14:43 EDT 2019. Contains 327198 sequences. (Running on oeis4.)