This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292310 Triangular numbers that are equidistant from two other triangular numbers. 4
 3, 21, 28, 36, 78, 105, 153, 171, 190, 210, 253, 325, 351, 378, 465, 528, 666, 703, 903, 946, 990, 1035, 1128, 1176, 1275, 1378, 1485, 1540, 1596, 1653, 1711, 1770, 1891, 1953, 2278, 2346, 2556, 2628, 2775, 2926, 3003, 3081, 3160, 3403, 3570, 3741, 3828, 4095, 4186, 4278, 4371, 4656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Triangular numbers which are the arithmetic mean of two other triangular numbers. - R. J. Mathar, Oct 01 2017 LINKS FORMULA a(n) = A292309(n)/3. EXAMPLE 3 is in the sequence because 0 = A000217(0), 6 = A000217(3), and the distances from 3 to 0 and 3 to 6 are the same. 153 is in sequence because 153 = A000217(17), 6 = A000217(2), 300 = A000217(24), and the two distances 300-153 = 153-6 = 147 are the same. MAPLE isA292310 := proc(n)     local ilow ;     if isA000217(n) then         for ilow from 0 do             tilow := A000217(ilow) ;             if tilow >= n then                 return false ;             elif isA000217(2*n-tilow) then                 return true ;             end if;         end do:     else         false;     end if; end proc: for n from 1 to 5000 do     if isA292310(n) then         printf("%d, ", n) ;     end if; end do: # R. J. Mathar, Oct 01 2017 PROG (PARI) t=3; k=2; while(t<=6000, i=k; e=0; v=t+i; while(i>0&&e==0, if(issquare(8*v+1), e=1; print1(t, ", ")); i--; v+=i); k++; t+=k) (PARI) upto(n) = {my(t = 0, i = 0, triangulars = List(), res = List); while(t <= n, i++; t+=i; listput(triangulars, t)); for(i=2, #triangulars, tr = triangulars[i]<<1; for(j = 1, i-1, if(issquare(8 * (tr - triangulars[j]) + 1), listput(res, triangulars[i]); next(2)))); res} \\ David A. Corneth, Oct 04 2017 CROSSREFS Cf. A000217, A292309, A292313, A292314, A292316. Sequence in context: A074217 A062219 A091103 * A045802 A006133 A317860 Adjacent sequences:  A292307 A292308 A292309 * A292311 A292312 A292313 KEYWORD nonn AUTHOR Antonio Roldán, Sep 14 2017 EXTENSIONS Term 105 added by David A. Corneth, Oct 04 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 13:48 EDT 2019. Contains 326279 sequences. (Running on oeis4.)