login
A292309
Numbers equal to the sum of three triangular numbers in arithmetic progression.
4
9, 63, 84, 108, 234, 315, 459, 513, 570, 630, 759, 975, 1053, 1134, 1395, 1584, 1998, 2109, 2709, 2838, 2970, 3105, 3384, 3528, 3825, 4134, 4455, 4620, 4788, 4959, 5133, 5310, 5673, 5859, 6834, 7038, 7668, 7884, 8325, 8778, 9009, 9243, 9480, 10209, 10710, 11223
OFFSET
1,1
COMMENTS
Subsequence of A045943, because a(n) = 3*k*(k+1)/2 = 3*A000217(k) for some k.
FORMULA
a(n) = 3*A292310(n).
EXAMPLE
9 = A000217(0) + A000217(2) + A000217(3) = 0 + 3 + 6, with 6 - 3 = 3 - 0 = 3.
513 = A000217(11) + A000217(18) + A000217(23) = 66 + 171 + 276, with 171 - 66 = 276 - 171 = 105.
MATHEMATICA
Module[{t = 3, k = 2, i, e, v, m}, Reap[While[t <= 5000, i = k; e = 0; v = t+i; While[i > 0 && e == 0, If[IntegerQ @ Sqrt[8v+1], m = 3t; e = 1; Sow[m]]; i--; v += i]; k++; t += k]][[2, 1]]] (* Jean-François Alcover, Jun 25 2023, after PARI code *)
PROG
(PARI) t=3; k=2; while(t<=5000, i=k; e=0; v=t+i; while(i>1&&e==0, if(issquare(8*v+1), m=3*t; e=1; print1(m, ", ")); i+=-1; v+=i); k+=1; t+=k)
KEYWORD
nonn
AUTHOR
Antonio Roldán, Sep 14 2017
STATUS
approved