|
|
A292306
|
|
a(n) = [x^n] Product_{k>=1} (1 + n^n*x^k).
|
|
5
|
|
|
1, 1, 4, 756, 65792, 19534375, 101564310279744, 558547898753326097, 9444733810164237336576, 174449211609498720646587480, 10000000004000000000400000000010000000000, 6626407607852766876000106671521201448502431912
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: log(a(n)) ~ (sqrt(2)*n^(3/2) - n/2)*log(n). - Vaclav Kotesovec, Aug 22 2018
|
|
MATHEMATICA
|
nmax = 14; Table[SeriesCoefficient[Product[(1+n^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|