login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292304
a(n) = [x^n] Product_{k>=1} (1 + n^2*x^k).
5
1, 1, 4, 90, 272, 1275, 49284, 124901, 536640, 1620648, 104040100, 223290012, 880969104, 2485978170, 7454471332, 592164776475, 1138401673472, 4109108002310, 10877348160900, 30962024560494, 72270337440400, 7523649856001916, 13202150810778116, 44577985082575400
OFFSET
0,3
LINKS
FORMULA
Conjecture: a(n) ~ exp(2*sqrt((Pi^2/6 + 2*log(n)^2)*n)) * (Pi^2/6 + 2*log(n)^2)^(1/4) / (2 * sqrt(Pi) * n^(7/4)).
MATHEMATICA
nmax = 30; Table[SeriesCoefficient[Product[(1+n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
Table[SeriesCoefficient[QPochhammer[-n^2, x, 1 + n]/(1 + n^2), {x, 0, n}], {n, 0, 30}]
CROSSREFS
Sequence in context: A184955 A205295 A376299 * A337081 A218385 A189882
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 14 2017
STATUS
approved