login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092484
Expansion of Product_{m>=1} (1 + m^2*q^m).
13
1, 1, 4, 13, 25, 77, 161, 393, 726, 2010, 3850, 7874, 16791, 31627, 69695, 139560, 255997, 482277, 986021, 1716430, 3544299, 6507128, 11887340, 21137849, 38636535, 70598032, 123697772, 233003286, 412142276, 711896765, 1252360770
OFFSET
0,3
COMMENTS
Sum of squares of products of terms in all partitions of n into distinct parts.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ sqrt(2*n) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020
EXAMPLE
The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding squares of products are 36, 25, 64, 36 and their sum is a(6) = 161.
MAPLE
b:= proc(n, i) option remember; (m->
`if`(m<n, 0, `if`(n=m, i!^2, b(n, i-1)+
`if`(i>n, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Sep 10 2017
MATHEMATICA
Take[ CoefficientList[ Expand[ Product[1 + m^2*q^m, {m, 100}]], q], 31] (* Robert G. Wilson v, Apr 05 2005 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(n=1, N, 1+n^2*x^n)) \\ Seiichi Manyama, Sep 10 2017
CROSSREFS
Column k=2 of A292189.
Sequence in context: A056708 A307271 A333297 * A091823 A024834 A143867
KEYWORD
nonn
AUTHOR
Jon Perry, Apr 04 2004
EXTENSIONS
More terms from Robert G. Wilson v, Apr 05 2004
STATUS
approved