OFFSET
3,2
REFERENCES
B. de Bivort, Isotemporal classes of n-gons, preprint, 2004.
B. de Bivort, An introduction to temporal networks, preprint, 2004.
LINKS
B. de Bivort, Isotemporal classes of n-gons
FORMULA
If n odd: (1/n) sum_{d|n} (2^(n/d-1)-1) phi(d).
If n = 4k + 2: (1/n) {sum_{d|n} (2^(n/d-1) phi(d)) - sum_{c|n/2} (2^(n/2c-1) phi(2c)} + 2^(n-4)/2
If n = 4k: (1/n) {sum_{d|n} (2^(n/d-1) phi(d)) - sum_{c|n/2} (2^(n/2c-1) phi(2c))} + 2^(n-4)/2 + 2^(n-8)/4 - 2^(ceiling[(n-4)/8]-1).
MATHEMATICA
f[n_] := Block[{d = Divisors[n], c = Divisors[n/2]}, Switch[ Mod[n, 4], 0, (Plus @@ (2^(n/d - 1)EulerPhi[d]) - Plus @@ (2^(n/(2c) - 1)EulerPhi[2c]))/n + 2^((n - 4)/2) + 2^((n - 8)/4) - 2^(Ceiling[(n - 4)/8] - 1), 1, (Plus @@ ((2^(n/d - 1) - 1)EulerPhi[d]))/n, 2, (Plus @@ (2^(n/d - 1)EulerPhi[d]) - Plus @@ (2^(n/(2c) - 1)EulerPhi[2c]))/n + 2^((n - 4)/2), 3, (Plus @@ ((2^(n/d - 1) - 1)EulerPhi[d]))/n]]; Table[ f[n], {n, 3, 36}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Benjamin de Bivort (bivort(AT)fas.harvard.edu), Apr 03 2004
EXTENSIONS
Edited by Robert G. Wilson v, Apr 09 2004
STATUS
approved