login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304967
Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-p(k-1)), where p(k) = number of partitions of k (A000041).
6
1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 49, 68, 123, 173, 295, 432, 707, 1044, 1672, 2483, 3900, 5817, 8993, 13424, 20539, 30609, 46399, 69052, 103879, 154198, 230550, 341261, 507484, 749028, 1108559, 1631340, 2404311, 3527615, 5179317, 7577263, 11086413, 16173577, 23588227
OFFSET
0,5
COMMENTS
Euler transform of A002865.
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A002865(k).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)-1)*b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
b(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 22 2018
MATHEMATICA
nmax = 42; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - PartitionsP[k - 1]), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - PartitionsP[d - 1]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 42}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2018
STATUS
approved