login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304965
Expansion of Product_{k>=1} 1/(1 - x^k)^tau_k(k), where tau_k(k) = number of ordered k-factorizations of k (A163767).
3
1, 1, 3, 6, 19, 30, 96, 152, 461, 775, 1883, 3271, 8751, 14370, 34004, 59491, 140450, 239746, 541817, 932681, 2089189, 3606641, 7719178, 13398411, 28848808, 49603982, 103047935, 179154858, 370200348, 639269735, 1295389370, 2241994088, 4511677298, 7798101800, 15408901600
OFFSET
0,3
COMMENTS
Euler transform of A163767.
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A163767(k).
MAPLE
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=numtheory[divisors](n)))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
A(d$2), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
MATHEMATICA
nmax = 34; CoefficientList[Series[Product[1/(1 - x^k)^Times@@(Binomial[# + k - 1, k - 1]&/@FactorInteger[k][[All, 2]]), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Times@@(Binomial[# + d - 1, d - 1]&/@FactorInteger[d][[All, 2]]), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2018
STATUS
approved