login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022663
Expansion of Product_{m>=1} (1 - m*q^m)^3.
2
1, -3, -3, 8, 9, 18, -35, -33, -66, -91, 216, 189, 386, 315, 333, -1483, -2268, -2214, -1883, -456, -801, 23032, 12186, 22665, 18622, -20328, -39549, -78834, -146838, -249342, -146662, 15678, 564771, 238159, 1274913, 1398063, 1572593, 1423266, -833778, -3484732, -5261736, -9671502
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -3, g(n) = n. - Seiichi Manyama, Dec 29 2017
LINKS
FORMULA
G.f.: exp(-3*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 07 2018
MATHEMATICA
With[{nmax=34}, CoefficientList[Series[Product[(1-k*q^k)^3, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 23 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^3)) \\ G. C. Greubel, Feb 23 2018
(Magma) Coefficients(&*[(1-m*x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 23 2018
CROSSREFS
Column k=3 of A297323.
Sequence in context: A335602 A092549 A260890 * A304967 A323654 A092481
KEYWORD
sign
EXTENSIONS
More terms added by G. C. Greubel, Feb 23 2018
STATUS
approved