|
|
A022665
|
|
Expansion of Product_{m>=1} (1 - m*q^m)^5.
|
|
2
|
|
|
1, -5, 0, 25, 0, -26, -145, 0, 265, 265, 993, -825, -2070, -3190, -2335, 2739, 7890, 29570, 21085, -5250, -73006, -71945, -191140, -176805, 185045, 295675, 1204590, 1067375, 1353655, -910885, -3688009, -4645850, -9409195, -12021485, -4296815, 19981183, 28942560, 76843230, 70996895
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: exp(-5*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 07 2018
|
|
MATHEMATICA
|
With[{nmax=50}, CoefficientList[Series[Product[(1-k*q^k)^5, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 23 2018 *)
|
|
PROG
|
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^5)) \\ G. C. Greubel, Feb 23 2018
(Magma) Coefficients(&*[(1-m*x^m)^5:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 23 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|