The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A329252 Let P1 >= 5, P2, P3 be consecutive primes, with P2 - P1 = 2. a(n) = (P1 + P2)/12 for the first occurrence of (P3 - P2)/2 = n. 3
 1, 5, 0, 23, 33, 0, 322, 87, 0, 325, 278, 0, 495, 1293, 0, 2027, 4725, 0, 3468, 2690, 0, 27177, 14438, 0, 4245, 6773, 0, 13283, 24938, 0, 104283, 92067, 0, 28893, 60015, 0, 119362, 46905, 0, 44270, 106323, 0, 90713, 67475, 0, 266618, 207107, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Position of first occurrence of a gap of length P3 - P2 = 2*n containing no primes, immediately following the twin primes (P1,P2). To indicate impossible gaps of lengths 8, 14, 20, ..., a(3k+1) is set to 0 for all k >= 1. LINKS Hugo Pfoertner, Table of n, a(n) for n = 2..209 EXAMPLE a(5) = 23 because the prime gap following P1 = 6*23 - 1 = 137, P2 = 6*23 + 1 = 139 is the first such gap with length 2*n = 10. P3 - P2 = 149 - 139 = 10. PROG (PARI) my(v=vector(60), p1=5, p2=7, d); forprime(p3=11, 5e6, if(p2-p1==2, d=(p3-p2)/2; if(v[d]==0, v[d]=(p1+p2)/12)); p1=p2; p2=p3); v[2..49] CROSSREFS Cf. A329160, A329161, A329250, A329251. Sequence in context: A279547 A279700 A279603 * A022665 A114205 A316464 Adjacent sequences: A329249 A329250 A329251 * A329253 A329254 A329255 KEYWORD nonn AUTHOR Hugo Pfoertner, Nov 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 05:34 EDT 2024. Contains 374935 sequences. (Running on oeis4.)