login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114205 Write decimal expansion of 1/n as 0.PPP...PQQQ..., where QQQ... is the cyclic part. If the expansion does not terminate, any leading 0's in QQQ... are regarded as being at the end of the PPP...P part. Sequence gives PPP...P, right justified, with leading zeros omitted. 7
5, 0, 25, 2, 1, 0, 125, 0, 1, 0, 8, 0, 0, 0, 625, 0, 0, 0, 5, 0, 0, 0, 41, 4, 0, 0, 3, 0, 0, 0, 3125, 0, 0, 0, 2, 0, 0, 0, 25, 0, 0, 0, 2, 0, 0, 0, 208, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 1, 0, 0, 0, 15625, 0, 0, 0, 1, 0, 0, 0, 13, 0, 0, 1, 1, 0, 0, 0, 125, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
b(n) = A114206(n) gives the length of P (including leading zeros), c(n) = A036275(n) gives the smallest cycle in QQQ... (including terminating zeros) and d(n) = A051626(n) gives the length of that cycle.
Thus 1/n = 10^(-b(n)) * ( a(n) + c(n)/(10^d(n) - 1) ). When c(n)=d(n)=0, the fraction c(n)/(10^d(n) - 1), which is 0/0, evaluates (by definition) to 0.
LINKS
EXAMPLE
n .. expansion of 1/n .... a b c d
2 .50000000000000000000... 5 1 0 0
3 .33333333333333333333... 0 0 3 1
4 .25000000000000000000... 25 2 0 0
5 .20000000000000000000... 2 1 0 0
6 .16666666666666666667... 1 1 6 1
7 .14285714285714285714... 0 0 142857 6
8 .12500000000000000000... 125 3 0 0
9 .11111111111111111111... 0 0 1 1
10 .1000000000000000000... 1 1 0 0
11 .0909090909090909090... 0 1 90 2
12 .0833333333333333333... 8 2 3 1
13 .0769230769230769230... 0 1 769230 6
14 .0714285714285714285... 0 1 714285 6
15 .0666666666666666666... 0 1 6 1
16 .0625000000000000000... 625 4 0 0
MAPLE
A114205 := proc(n) local sh, lpow, mpow, a, b ; lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then a := (10^lpow-10^mpow)/n ; sh := 10^(lpow-mpow)-1 ; b := a mod sh ; a := floor(a/sh) ; while b>0 and b*10 < sh+1 do a := 10*a ; b := 10*b ; end ; RETURN(a) ; fi ; od ; lpow := lpow+1 ; od ; end: for n from 2 to 600 do printf("%d %d ", n, A114205(n)) ; od ; # R. J. Mathar, Oct 19 2006
MATHEMATICA
fa[n_] := Block[{p}, p = First[RealDigits[1/n]]; If[ ! IntegerQ[Last[p]], p = Most[p]]; FromDigits[p]]; Table[fa[n], {n, 100}] (* Ray Chandler, Oct 18 2006 *)
Mathematica code from Hans Havermann, Oct 19 2006:
r[x_] := RealDigits[1/x]
w[x_] := First[r[x]]
f[x_] := First[w[x]]
l[x_] := Last[w[x]]
z[x_] := Last[r[x]]
a[x_] := Which[IntegerQ[l[x]], FromDigits[w[x]], IntegerQ[f[x]] ==False, 0, True, FromDigits[Drop[w[x], -1]]]
b[x_] := Which[IntegerQ[l[x]], Length[w[x]]-1*z[x], IntegerQ[f[x]] ==False, -1*z[x], True, Length[Drop[w[x], -1]]-1*z[x]]
c[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, FromDigits[f[x]], True, FromDigits[l[x]]]
d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]
CROSSREFS
Sequence in context: A279603 A329252 A022665 * A316464 A167315 A167362
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 17 2006
EXTENSIONS
More terms from Ray Chandler and Hans Havermann, Oct 18 2006
I would also like to get programs that produce this and A114206, A036275, A051626 in Maple.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 07:48 EDT 2024. Contains 375959 sequences. (Running on oeis4.)