|
|
A114205
|
|
Write decimal expansion of 1/n as 0.PPP...PQQQ..., where QQQ... is the cyclic part. If the expansion does not terminate, any leading 0's in QQQ... are regarded as being at the end of the PPP...P part. Sequence gives PPP...P, right justified, with leading zeros omitted.
|
|
7
|
|
|
5, 0, 25, 2, 1, 0, 125, 0, 1, 0, 8, 0, 0, 0, 625, 0, 0, 0, 5, 0, 0, 0, 41, 4, 0, 0, 3, 0, 0, 0, 3125, 0, 0, 0, 2, 0, 0, 0, 25, 0, 0, 0, 2, 0, 0, 0, 208, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 1, 0, 0, 0, 15625, 0, 0, 0, 1, 0, 0, 0, 13, 0, 0, 1, 1, 0, 0, 0, 125, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
b(n) = A114206(n) gives the length of P (including leading zeros), c(n) = A036275(n) gives the smallest cycle in QQQ... (including terminating zeros) and d(n) = A051626(n) gives the length of that cycle.
Thus 1/n = 10^(-b(n)) * ( a(n) + c(n)/(10^d(n) - 1) ). When c(n)=d(n)=0, the fraction c(n)/(10^d(n) - 1), which is 0/0, evaluates (by definition) to 0.
|
|
LINKS
|
|
|
EXAMPLE
|
n .. expansion of 1/n .... a b c d
2 .50000000000000000000... 5 1 0 0
3 .33333333333333333333... 0 0 3 1
4 .25000000000000000000... 25 2 0 0
5 .20000000000000000000... 2 1 0 0
6 .16666666666666666667... 1 1 6 1
7 .14285714285714285714... 0 0 142857 6
8 .12500000000000000000... 125 3 0 0
9 .11111111111111111111... 0 0 1 1
10 .1000000000000000000... 1 1 0 0
11 .0909090909090909090... 0 1 90 2
12 .0833333333333333333... 8 2 3 1
13 .0769230769230769230... 0 1 769230 6
14 .0714285714285714285... 0 1 714285 6
15 .0666666666666666666... 0 1 6 1
16 .0625000000000000000... 625 4 0 0
|
|
MAPLE
|
A114205 := proc(n) local sh, lpow, mpow, a, b ; lpow:=1 ; while true do for mpow from lpow-1 to 0 by -1 do if (10^lpow-10^mpow) mod n =0 then a := (10^lpow-10^mpow)/n ; sh := 10^(lpow-mpow)-1 ; b := a mod sh ; a := floor(a/sh) ; while b>0 and b*10 < sh+1 do a := 10*a ; b := 10*b ; end ; RETURN(a) ; fi ; od ; lpow := lpow+1 ; od ; end: for n from 2 to 600 do printf("%d %d ", n, A114205(n)) ; od ; # R. J. Mathar, Oct 19 2006
|
|
MATHEMATICA
|
fa[n_] := Block[{p}, p = First[RealDigits[1/n]]; If[ ! IntegerQ[Last[p]], p = Most[p]]; FromDigits[p]]; Table[fa[n], {n, 100}] (* Ray Chandler, Oct 18 2006 *)
r[x_] := RealDigits[1/x]
w[x_] := First[r[x]]
f[x_] := First[w[x]]
l[x_] := Last[w[x]]
z[x_] := Last[r[x]]
a[x_] := Which[IntegerQ[l[x]], FromDigits[w[x]], IntegerQ[f[x]] ==False, 0, True, FromDigits[Drop[w[x], -1]]]
b[x_] := Which[IntegerQ[l[x]], Length[w[x]]-1*z[x], IntegerQ[f[x]] ==False, -1*z[x], True, Length[Drop[w[x], -1]]-1*z[x]]
c[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, FromDigits[f[x]], True, FromDigits[l[x]]]
d[x_] := Which[IntegerQ[l[x]], 0, IntegerQ[f[x]]==False, Length[f[x]], True, Length[l[x]]]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|