OFFSET
0,5
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
As a number triangle, with J(n) = A001045(n):
T(n, k) = Sum_{i=0..n-k} C(n-k, i)*C(k, i)*J(i);
T(n, k) = Sum_{i=0..n} C(n-k, n-i)*C(k, i-k)*J(i-k);
T(n, k) = Sum_{i=0..n} C(k, i)*C(n-k, n-i)*J(k-i) if k <= n, and 0 otherwise.
As a square array, with J(n) = A001045(n):
T(n, k) = Sum_{i=0..n} C(n, i)C(k, i)*J(i);
T(n, k) = Sum_{i=0..n+k} C(n, n+k-i)*C(k, i-k)*J(i-k);
Column k has g.f. (Sum_{i=0..k} C(k, i)*J(i+1)*(x/(1 - x))^i)*x^k/(1 - x).
EXAMPLE
Triangle begins
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 8, 4, 1;
1, 5, 16, 16, 5, 1;
1, 6, 27, 42, 27, 6, 1;
1, 7, 41, 87, 87, 41, 7, 1;
...
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Nov 16 2005
STATUS
approved