login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073134
Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.
3
1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
OFFSET
1,5
LINKS
Shmuel T. Klein, Combinatorial Representation of Generalized Fibonacci Numbers, Fib. Quarterly 29 (2) (1991) 124-131, variable U_n^m. [From R. J. Mathar, Feb 19 2010]
FORMULA
T(n, k) = A073133(n, k)-2*A073135(n, k-2).
T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.
EXAMPLE
Rows start:
1, 1, 0, -1, -1, 0, 1, ...;
1, 2, 3, 4, 5, 6, 7, ...;
1, 3, 8, 21, 55, 144, 377, ...;
1, 4, 15, 56, 209, 780, 2911, ...;
...
PROG
(PARI) T(n, k) = sum(j=0, k-1, A049310(k-1, j)*n^j) \\ Jason Yuen, Aug 20 2024
CROSSREFS
Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.
Cf. A094954.
Sequence in context: A196922 A135597 A169945 * A300260 A026692 A114202
KEYWORD
sign,tabl,changed
AUTHOR
Henry Bottomley, Jul 16 2002
STATUS
approved