login
A073135
Table by antidiagonals of T(n,k)=2n*T(n,k-1)-n^2*T(n,k-2)+T(n,k-4) starting with T(n,1)=1.
2
1, 2, 1, 3, 4, 1, 4, 12, 6, 1, 6, 32, 27, 8, 1, 10, 81, 108, 48, 10, 1, 17, 200, 406, 256, 75, 12, 1, 28, 488, 1470, 1281, 500, 108, 14, 1, 45, 1184, 5193, 6160, 3126, 864, 147, 16, 1, 72, 2865, 18036, 28832, 18770, 6481, 1372, 192, 18, 1, 116, 6924, 61885, 132352
OFFSET
0,2
FORMULA
T(n, k) =(A073133(n, k+2)-A073134(n, k+2))/2 =sum_j{0<=j<=[(k-1)/4]} abs(A053122(k-3j-1, j)*n^(k-4j-1))
EXAMPLE
Rows start: 1,2,3,4,6,10,17,...; 1,4,12,32,81,200,488,...; 1,6,27,108,406,1470,5193,...; 1,8,48,256,1281,6160,28832,...; etc.
CROSSREFS
Rows include A024490, A048776. Columns include A000012, A005843, A033428, A033430.
Sequence in context: A240783 A327083 A104002 * A063804 A213800 A224823
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Jul 16 2002
STATUS
approved