login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224823
Number of solutions to n = x + y + 3*z where x, y, z are triangular numbers.
5
1, 2, 1, 3, 4, 1, 5, 4, 0, 6, 6, 3, 5, 6, 2, 6, 8, 0, 7, 8, 4, 9, 6, 1, 11, 10, 0, 8, 6, 5, 9, 12, 3, 7, 14, 0, 11, 8, 5, 13, 10, 4, 8, 8, 0, 14, 16, 5, 11, 12, 1, 16, 10, 0, 14, 14, 7, 9, 12, 5, 14, 14, 0, 7, 16, 7, 18, 14, 4, 19, 10, 0, 12, 16, 9, 13, 20, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(A224829(n)) = 0. - Reinhard Zumkeller, Jul 21 2013
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(x)^2 * psi(x^3) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(-5/8) * eta(q^2)^4 * eta(q^6)^2 / (eta(q)^2 * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [ 2, -2, 3, -2, 2, -3, ...].
G.f.: (Sum_{k>0} x^((k^2-k)/2))^2 * (Sum_{k>0} x^(3 * (k^2-k)/2)).
-2 * a(n) = A227595(3*n + 1).
EXAMPLE
G.f. = 1 + 2*x + x^2 + 3*x^3 + 4*x^4 + x^5 + 5*x^6 + 4*x^7 + 6*x^9 + 6*x^10 + ...
G.f. = q^5 + 2*q^13 + q^21 + 3*q^29 + 4*q^37 + q^45 + 5*q^53 + 4*q^61 + 6*q^77 + ...
a(3) = 3 since 3 = 0 + 0 + 3*1 = 0 + 3 + 3*0 = 3 + 0 + 3*0 are the 3 solutions of 3 = x + y + 3*z in triangular numbers.
a(4) = 4 since 4 = 1 + 0 + 3*1 = 0 + 1 + 3*1 = 3 + 1 + 3*0 = 1 + 3 + 3*0 are the 4 solutions of 4 = x + y + 3*z in triangular numbers.
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^2 EllipticTheta[ 2, 0, x^(3/2)] / (8 x^(5/8)), {x, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^2 * eta(x^3 + A)), n))};
(Haskell)
a224823 n = length [() | let ts = takeWhile (<= n) a000217_list,
x <- ts, y <- ts, z <- takeWhile (<= div (n - x - y) 3) ts,
x + y + 3 * z == n]
-- Reinhard Zumkeller, Jul 21 2013
CROSSREFS
Cf. A227595.
Cf. A000217.
Sequence in context: A073135 A063804 A213800 * A372387 A078753 A119443
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 20 2013
STATUS
approved