login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372387
Decimal expansion of Sum_{k>=0} (-1)^k*(k^2+1) / (k^4+1).
2
2, 1, 3, 4, 1, 5, 4, 5, 7, 1, 0, 8, 7, 5, 7, 8, 3, 3, 2, 0, 8, 8, 4, 0, 0, 4, 0, 8, 9, 6, 6, 3, 6, 4, 2, 1, 2, 0, 4, 7, 1, 3, 2, 7, 0, 5, 3, 1, 0, 1, 4, 4, 6, 5, 9, 8, 1, 4, 5, 6, 1, 0, 1, 0, 3, 0, 9, 5, 8, 4, 8, 3, 1, 8, 2, 0, 5, 0, 6, 7, 1, 2, 3, 8, 2, 4
OFFSET
0,1
FORMULA
Equals 1/2 + sqrt(2)*Pi*cos(Pi/sqrt(2))*sinh(Pi/sqrt(2))/(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Vaclav Kotesovec, May 14 2024
EXAMPLE
0.2134154571087578332088400408966364212047132705...
MATHEMATICA
s = Sum[(-1)^k * (k^2 + 1)/(k^4 + 1), {k, 0, Infinity}]
d = Chop[N[s, 100]]
First[RealDigits[d]]
RealDigits[1/2 + Sqrt[2]*Pi*Cos[Pi/Sqrt[2]]*Sinh[Pi/Sqrt[2]] / (Cosh[Sqrt[2]*Pi] - Cos[Sqrt[2]*Pi]), 10, 120][[1]] (* Vaclav Kotesovec, May 14 2024 *)
PROG
(PARI) sumalt(k=0, (-1)^k*(k^2+1)/(k^4+1)) \\ Michel Marcus, May 15 2024
CROSSREFS
Cf. A372386.
Sequence in context: A063804 A213800 A224823 * A078753 A119443 A209413
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 12 2024
STATUS
approved